Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine.

نویسندگان

  • M-C Kuo
  • D D Rasmusson
  • H C Dringenberg
چکیده

Acetylcholine (ACh) plays important roles in the modulation of activity and plasticity of primary sensory cortices, thus influencing sensory detection and integration. We examined this in urethane-anesthetized rats, comparing cholinergic modulation of short latency, large amplitude field postsynaptic potentials (fPSPs) in the visual cortex (V1) evoked by stimulation of the ipsilateral lateral geniculate nucleus (LGN), reflecting direct thalamocortical inputs, with longer latency, smaller amplitude fPSPs elicited by contralateral LGN stimulation, reflecting indirect, polysynaptic inputs. Basal forebrain (BF) stimulation (100 Hz) produced a significant (approximately 45%), gradually developing potentiation of the smaller, contralateral fPSPs, while ipsilateral fPSPs showed less enhancement (approximately 15%), shifting the relative strength of dominant/ipsi- and weaker/contralateral inputs to V1. Systemic or local, cortical blockade of muscarinic receptors (scopolamine) reduced potentiation of contralateral fPSP without affecting ipsilateral enhancement, thus preventing the relative amplification of contralateral inputs following BF stimulation. Systemic nicotinic receptor blockade (mecamylamine) resulted in depression of ipsilateral, and reduced enhancement of contralateral fPSPs after BF stimulation. N-methyl-D-aspartate receptor blockade (systemic MK-801) abolished ipsilateral fPSP enhancement without affecting contralateral potentiation. Neither drug reduced the amplification of contralateral relative to ipsilateral signals in V1. In a second experiment in the barrel cortex, BF stimulation enhanced multiunit activity elicited by whisker deflection in a muscarinic-sensitive manner. Similar to the observations in V1, this effect was more pronounced for weaker multiunit activity driven by a surround whisker than activity following principal whisker deflection. These experiments demonstrate that ACh release following BF stimulation exerts surprisingly selective effects to amplify non-dominant inputs to sensory cortices. We suggest that, by diminishing the imbalance between different afferent signals, ACh release during states of behavioral activation acts to induce a long-lasting facilitation of the detection and/or integration of signals in primary sensory fields of the cortical mantle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception

The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical plasticity, attention and learning. In this review, we propose that the cellular effects of acetylcholine (ACh) in the primary visual cortex during the processing of visual inputs might induce perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of cholinergic ...

متن کامل

Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity

Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...

متن کامل

Specific and Non-Specific Thalamocortical Afferents to the Whisker–Related Sensory Cortical Region in Rats with Congenital Hypothyroidism

Background & Aims: Thyroid hormones are of great importance in the development of the central nervous system. Congenital hypothyroidism may affect the reorganization of specific and non-specific thalamocortical afferents to whisker–related sensory (wS1) corticol region in rats. Methods: Congenital hypothyroidism was induced by adding propylthiouracil (PTU) (25 ppm) to the rats...

متن کامل

The Protective Effects of Crocin on Input-Output Functions and Long-term Potentiation of Hippocampal CA1 Area in Rats Exposed to Chronic Social Isolated Stress

Introduction: The lack of social communication is associated with the primary risk of proper brain functions. It is reported that crocin helps relieve this problem. The present study examined the protective effect of two doses of crocin on Long-term potentiation (LTP) of hippocampal cornu ammonis 1 (CA1) area as a cellular mechanism in rats exposed to chronic social isolated stress. Methods: R...

متن کامل

Spatial distribution of potentiated synapses in hippocampus: dependence on cellular mechanisms and network properties.

Long-term potentiation (LTP) of synaptic transmission, studied intensively in reduced brain preparations such as hippocampal brain slices, is the leading candidate for the cellular/molecular basis of learning and memory. Serious consideration of LTP as underlying information storage in the intact brain, however, requires understanding how LTP can be induced selectively at specific synaptic site...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 163 1  شماره 

صفحات  -

تاریخ انتشار 2009